Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance.

نویسندگان

  • Jinpeng Gao
  • James G Wallis
  • Jeremy B Jewell
  • John Browse
چکیده

Chilling stress is a major factor limiting plant development and crop productivity. Because the plant response to chilling is so complex, we are far from understanding the genes important in the response to chilling. To identify new genes important in chilling tolerance, we conducted a novel mutant screen, combining a confirmed SALK T-DNA insertion collection with traditional forward genetics. We screened a pool of more than 3700 confirmed homozygous SALK T-DNA insertion lines for visible defects under prolonged growth at 5°C. Of the chilling-sensitive mutants we observed, mutations at one locus were characterized in detail. This gene, At1g45231, encodes an Arabidopsis (Arabidopsis thaliana) trimethylguanosine synthase (TGS1), previously uncharacterized in the plant kingdom. We confirmed that Arabidopsis TGS1 is a functional ortholog of other trimethylguanosine synthases based both on its in vitro methyltransferase activity and on its ability to rescue the cold-growth inhibition of a Saccharomyces cerevisiae tgs1Δ mutant in vivo. While tgs1 mutant plants grew normally at 22°C, their vegetative and reproductive growth was severely compromised under chilling conditions. When we transgenically expressed TGS1 in the mutant plants, the chilling-sensitive phenotype was relieved, demonstrating that TGS1 is required for chilling tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance1[OPEN]

Chilling stress is a major factor limiting plant development and crop productivity. Because the plant response to chilling is so complex, we are far from understanding the genes important in the response to chilling. To identify new genes important in chilling tolerance, we conducted a novel mutant screen, combining a confirmed SALK T-DNA insertion collection with traditional forward genetics. ...

متن کامل

Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1

The 5'-cap of spliceosomal small nuclear RNAs, some small nucleolar RNAs and of telomerase RNA was found to be hypermethylated in vivo. The Trimethylguanosine Synthase 1 (TGS1) mediates this conversion of the 7-methylguanosine-cap to the 2,2,7-trimethylguanosine (m(3)G)-cap during maturation of the RNPs. For mammalian UsnRNAs the generated m(2,2,7)G-cap is one part of a bipartite import signal ...

متن کامل

Self-association of Trimethylguanosine Synthase Tgs1 is required for efficient snRNA/snoRNA trimethylation and pre-rRNA processing

Trimethylguanosine Synthase catalyses transfer of two methyl groups to the m(7)G cap of RNA polymerase II transcribed snRNAs, snoRNAs, and telomerase RNA TLC1 to form a 2,2,7-trimethylguanosine cap. While in vitro studies indicate that Tgs1 functions as a monomer and the dimethylation of m(7)G caps is not a processive reaction, partially methylated sn(o)RNAs are typically not detected in living...

متن کامل

Mutational analyses of trimethylguanosine synthase (Tgs1) and Mud2: proteins implicated in pre-mRNA splicing.

Yeast and human Tgs1 are orthologous RNA cap (guanine-N2) methyltransferases that convert m(7)G caps into the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. TMG caps are dispensable for vegetative yeast growth, but are essential in the absence of Mud2, the putative yeast homolog of human splicing factor U2AF. Here we exploited the synthetic lethal interactions of tgs...

متن کامل

An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs

Tgs1 is the enzyme that converts m(7)G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis. tgs1Δ cells are specifically d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 174 3  شماره 

صفحات  -

تاریخ انتشار 2017